BRIEF COMMUNICATIONS

Li₂Znl₄: A Neutron Powder Study

A. PFITZNER AND H. D. LUTZ¹

Universität Siegen, Anorganische Chemie I, Postfach 10 12 40, D-5900 Siegen, Federal Republic of Germany

and J. K. COCKCROFT

Institut Max von Laue—Paul Langevin, BP 156 X, F-38042 Grenoble Cedex, France

Received February 27, 1990

The crystal structure of $\text{Li}_2 \text{ZnI}_4$ was determined by means of neutron powder diffraction studies at 298 K. The olivine-type structure (space group *Pnma*, Z = 4, a = 1480.3(9), b = 856.0(2), c = 701.2(1) pm) was refined by the Rietveld method to a final $R_1 = 5.48\%$. In a nearly ideal hexagonal close-packed iodide ion arrangement, Li is located in octahedral, and Zn, in tetrahedral voids, respectively. Apart from the Zn–I distances, which are significantly shortened, the bond lengths obtained are as expected from the crystal radii. © 1990 Academic Press, Inc.

Introduction

Ternary lithium halides Li_2MCl_4 (M = Mg, V, Cr, Mn, Fe, Co, Cd) and Li_2MBr_4 (M = Mg, Mn, Cd) belong to the best lithium ion conductors known (1-4). The unusually high ionic conductivity of these compounds is connected with order-disorder phase transitions (5). Furthermore it has been proven that in the case of ternary chlorides with inverse spinel structure the mobility of tetrahedrally coordinated lithium ions is larger than that of lithium in octahedral voids (6). Therefore, we tried to synthesize new lithium halides with tetrahedrally coordinated lithium ions. The only ternary lithium iodide of the A_2BX_4 type obtained is Li_2ZnI_4 oP28 (7), which likewise exhibits high ionic conductivity. In this paper, we present the results of our neutron powder diffraction studies.

Experimental

 Li_2ZnI_4 was obtained by fusing stoichiometric amounts of anhydrous LiI and ZnI_2 in evacuated sealed borosilicate glass ampoules. Details are given elsewhere (7). The sample was characterized by X-ray Guinier photographs [Huber Guinier 600 system].

Neutron diffraction data (at 298 K) were collected on the powder diffractometer D2B with twofold collimation of 5' at the Institut Laue-Langevin (ILL) in Grenoble. A thinwalled vanadium can of 16 mm in diameter was used as sample container. The neutron

¹ To whom correspondence should be addressed.

FIG. 1. Observed (...), fitted (---), and difference profiles for Li_2ZnI_4 . Calculated 2 θ values indicated by vertical bars (|).

TABLE I	
DATA OF STRUCTURE REFINEMENT AND STRUCTURAL PARAMETERS OF LI	₂ZnI₄

b = 8	356.0(2) pm						
b = b	\$56.U(2) pm						
c = c	701.2(1) pm						
ip: Pnma							
Z = 4	Z = 4						
structural para	ameters: 18						
parameters (° ²)	eters (° ²) $U = 0.128(9)$						
•	V = -0.300(13)						
	W = 0.287(4)						
Position	Occupation	x	у	z	B/10 ⁴ pm ²		
4a	4	0	0	0	3.6(6)		
4 <i>c</i>	4	0.269(2)	0.25	0.000(6)	4.9(10)		
4 <i>c</i>	4	0.0858(9)	0.25	0.4037(7)	2.4(1)		
4 <i>c</i>	4	0.0918(8)	0.25	0.769(1)	2.1(3)		
4 <i>c</i>	4	0.4228(10)	0.25	0.252(1)	2.1(3)		
8 <i>d</i>	8	0.1700(7)	0.0063(9)	0.248(2)	2.6(2)		
5% (avnacted '	7 71%)						
10 / CAPECIEU	1.1170)						
1070							
	c = 7 $c = 7$ $Z = 4$ $z = 4$ c $z = 4$ c $z = 4$ c $z = 4$ c c $z = 4$ c c da dc dc dc dc dc dc dc dc	$c = 701.2(1) \text{ pm}$ $Ip: Pnma$ $Z = 4$ 'structural parameters: 18 parameters (°2) $U = 0.128(9)$ $V = -0.300(13)$ $W = 0.287(4)$ Position Occupation $4a \qquad 4$ $4c \qquad 4$ $8d \qquad 8$ 25% (expected 7.71%) 8%	$c = 701.2(1) \text{ pm}$ $Ip: Pnma$ $Z = 4$ 'structural parameters: 18 parameters (°2) U = 0.128(9) $V = -0.300(13)$ $W = 0.287(4)$ Position Occupation x $\frac{4a 4 0}{4c 4 0.269(2)}$ $4c 4 0.0858(9)$ $4c 4 0.0918(8)$ $4c 4 0.4228(10)$ $8d 8 0.1700(7)$ 25% (expected 7.71%) 18%	c = 701.2(1) pm $Ip: Pnma$ $Z = 4$ 'structural parameters: 18 parameters (°2) $U = 0.128(9)$ $V = -0.300(13)$ $W = 0.287(4)$ Position Occupation x y $4a 4 0 0$ $4c 4 0.269(2) 0.25$ $4c 4 0.0858(9) 0.25$ $4c 4 0.0918(8) 0.25$ $4c 4 0.4228(10) 0.25$ $8d 8 0.1700(7) 0.0063(9)$ 25% (expected 7.71%) $18%$	$c = 701.2(1) \text{ pm}$ $Pnma$ $Z = 4$ 'structural parameters: 18 parameters (°2) $U = 0.128(9)$ $V = -0.300(13)$ $W = 0.287(4)$ Position Occupation x y z $\frac{4a 4 0 0 0 0}{4c 4 0.269(2) 0.25 0.4037(7)}$ $4c 4 0.0858(9) 0.25 0.4037(7)$ $4c 4 0.0918(8) 0.25 0.769(1)$ $4c 4 0.4228(10) 0.25 0.252(1)$ $8d 8 0.1700(7) 0.0063(9) 0.248(2)$ 25% (expected 7.71%) $\frac{46}{48\%}$		

BRIEF COMMUNICATIONS

	ZnI ₄ te	trahedron	
Zn-I(1)	256.3(9)	I(1)-Zn-I(2)	116.3(5)
Zn-I(2)	264.8(19)	$2 \times I(1) - Zn - I(3)$	113.2(4)
		$2 \times I(2) - Zn - I(3)$	104.9(3)
$2 \times Zn-I(3)$	266.4(12)	I(3)–Zn–I(3)	103.1(5)
	LiI ₆ c	octahedra	
$2 \times \text{Li}(1) - I(1)$	300.8(7)	I(1)-Li(1)-I(1)	180.0
$2 \times \text{Li}(1) - \text{I}(2)$	298.5(7)	$2 \times I(1) - Li(1) - I(2)$	91.3(2)
$2 \times \text{Li}(1) - I(3)$	305.9(12)	2 ×	88.7(2)
		$2 \times I(1) - Li(1) - I(3)$	94.5(3)
		2 ×	85.5(3)
		I(2)-Li(1)-I(2)	180.0
		$2 \times I(2) - Li(1) - I(3)$	88.4(3)
		2 ×	91.7(3)
		I(3)-Li(1)-I(3)	180.0
Li(2) - I(1)	308.3(35)	I(1)-Li(2)-I(2)	173.9(15)
Li(2) - I(2)	288.2(37)	$2 \times I(1) - Li(2) - I(3)$	83.8(7)
$2 \times \text{Li}(2) - I(3)$	295.8(29)	$2 \times I(1) - Li(2) - I(3)$	86.9(9)
$2 \times \text{Li}(2) - I(3)$	308.6(30)	$2 \times I(2) - Li(2) - I(3)$	91.7(10)
		$2 \times I(2) - Li(2) - I(3)$	97.2(8)
		$2 \times I(3) - Li(2) - I(3)$	169.4(11)
		$2 \times I(3) - Li(2) - I(3)$	88.9(3)
		I(3)-Li(2)-I(3)	85.1(10)
		I(3) - Li(2) - I(3)	95.7(12)
I(1) - I(2)	418.8(14)-442.8(14))	()
I(1) - I(3)	412.0(14)-445.5(14)	
I(2) - I(3)	421.2(16)-438.1(14		

TABLE II
Selected Interatomic Distances (pm) and Angles (°) of Olivine-Type
Li_2ZnI_4 (esd's in Parentheses)

wavelength used was 159.4 pm. The 2θ range was 5–150°, the step-width being 0.025°. Background points were determined graphically.

Structural refinement was performed by means of a modified Rietveld program (8, 9) using the scattering lengths b(Li) = -2.03, b(Zn) = 5.68, and b(I) = 5.28 fm (10). The fractional coordinates of the isostructural Na₂ZnCl₄ (11) were used as starting parameters.

The R factors obtained are defined as $R_{wp} = 100\% \cdot [\Sigma w (Y_{obsd} - Y_{calcd})^2 / \Sigma w Y_{obsd}^2]^{\frac{1}{2}}, R_{exp} = 100\% \cdot [(N - P + C) / \Sigma w Y_{obsd}^2]^{\frac{1}{2}}, R_{I} = 100\% \cdot \Sigma |I_{obsd} - I_{calcd}| / \Sigma I_{obsd}$ with $w = 1/\sigma_{Y}$ and N - P + C = degrees of freedom.

Results and Discussion

The observed and fitted diffraction patterns of olivine-type Li_2ZnI_4 are shown in Fig. 1. The refinement converged to a final $R_1 = 5.48\%$, based on 1702 observations, containing 696 reflections and 1676 degrees of freedom. The final profile and structural parameters are given in Table I, selected interatomic distances and angles, in Table II. As described by Cockcroft and Fitch (12) the relatively large R_{wp} factor results from a non-Gaussian peak shape due to a defective monochromator on D2B, but does not affect the refinements in any way. The quality of the fit may be judged from Fig. 1.

The site occupancy of both lithium posi-

tions was found to be 100%. Attempts to refine the structure, assuming disorder, e.g., interchange of lithium and zinc, failed.

 Li_2ZnI_4 crystallizes with a nearly hexagonal close-packed arrangement of iodide ions. The lithium ions are located in octahedral voids, the zinc ions in tetrahedral ones.

The I–I interatomic distances (412.0 (14)–445.5(14) pm) correspond to the sum of the crystal radii, viz. 412 pm (13). The Zn–I distances (256.3(9)–266.4(12) pm) are significantly shorter than the sum of the crystal radii (280 pm), but resemble those in ZnI₂ (14). The Li–I distances (295.8(29)–308.6(30) pm) are as expected from the sum of the crystal radii (296 pm).

The high ionic conductivity of Li_2ZnI_4 (7) compared especially to that of LiI may be due to the great number of empty octahedral sites. However, partial occupation of these sites could not be observed.

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Institut Laue-Langevin for financial support.

References

- H. D. LUTZ, W. SCHMIDT, AND H. HAEUSELER, J. Phys. Chem. Solids 42, 287 (1981).
- 2. H. D. LUTZ, W. SCHMIDT, AND H. HAEUSELER, Naturwissenschaften 68, 328 (1981).
- R. KANNO, Y. TAKEDA, O. YAMAMOTO, C. CROS, W. GANG, AND P. HAGENMULLER, J. Electrochem. Soc. 133, 1052 (1986).
- 4. W. SCHMIDT AND H. D. LUTZ, Ber. Bunsenges, Phys. Chem. 88, 720 (1984).
- H. D. LUTZ, W. SCHMIDT, AND H. HAEUSELER, Z. Anorg. Allg. Chem. 453, 121 (1979).
- H. D. LUTZ, P. KUSKE, AND K. WUSSOW, Solid State Ionics 28-30, 1282 (1988).
- 7. H. D. LUTZ AND A. PFITZNER, Z. Naturforsch., B 44, 1047 (1989).
- 8. H. M. RIETVELD, J. Appl. Crystallogr. 2, 65 (1969).
- 9. J. K. COCKCROFT, Program PROFIL, Institut Laue Langevin, Grenoble, France (1987).
- L. KOESTER AND H. RAUCH, Summary of Neutron Scattering Lengths, IAEA-Contract 2517/RB (1983).
- C. J. J. VAN LOON AND D. VISSER, Acta Crystallogr., Sect. B 33, 188 (1977).
- 12. J. K. COCKCROFT AND A. N. FITCH, Z. Kristallogr. 184, 123 (1988).
- R. D. SHANNON, Acta Crystallogr. Sect. A 32, 751 (1976).
- 14. P. H. FOURCROY, D. CARRÈ, AND F. RIVET, Acta Crystallogr. Sect. B 34, 3160 (1978).